Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.946
1.
BMC Endocr Disord ; 24(1): 62, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724932

BACKGROUND: This study aimed to assess the anthropometric measures and pubertal growth of children and adolescents with Type 1 diabetes mellitus (T1DM) and to detect risk determinants affecting these measures and their link to glycemic control. PATIENTS AND METHODS: Two hundred children and adolescents were assessed using anthropometric measurements. Those with short stature were further evaluated using insulin-like growth factor 1 (IGF-1), bone age, and thyroid profile, while those with delayed puberty were evaluated using sex hormones and pituitary gonadotropins assay. RESULTS: We found that 12.5% of our patients were short (height SDS < -2) and IGF-1 was less than -2 SD in 72% of them. Patients with short stature had earlier age of onset of diabetes, longer duration of diabetes, higher HbA1C and urinary albumin/creatinine ratio compared to those with normal stature (p < 0.05). Additionally, patients with delayed puberty had higher HbA1c and dyslipidemia compared to those with normal puberty (p < 0.05). The regression analysis revealed that factors associated with short stature were; age at diagnosis, HbA1C > 8.2, and albumin/creatinine ratio > 8 (p < 0.05). CONCLUSION: Children with uncontrolled T1DM are at risk of short stature and delayed puberty. Diabetes duration and control seem to be independent risk factors for short stature.


Diabetes Mellitus, Type 1 , Insulin-Like Growth Factor I , Puberty , Humans , Child , Adolescent , Female , Male , Egypt/epidemiology , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/analysis , Puberty/physiology , Gonadal Steroid Hormones/blood , Anthropometry , Biomarkers/blood , Growth Disorders/etiology , Growth Disorders/diagnosis , Body Height , Puberty, Delayed/etiology , Puberty, Delayed/diagnosis , Puberty, Delayed/blood , Prognosis , Cross-Sectional Studies , Follow-Up Studies , Insulin-Like Peptides
2.
Int J Epidemiol ; 53(3)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38725300

BACKGROUND: Colorectal cancer (CRC) is the third-most-common cancer worldwide and its rates are increasing. Elevated body mass index (BMI) is an established risk factor for CRC, although the molecular mechanisms behind this association remain unclear. Using the Mendelian randomization (MR) framework, we aimed to investigate the mediating effects of putative biomarkers and other CRC risk factors in the association between BMI and CRC. METHODS: We selected as mediators biomarkers of established cancer-related mechanisms and other CRC risk factors for which a plausible association with obesity exists, such as inflammatory biomarkers, glucose homeostasis traits, lipids, adipokines, insulin-like growth factor 1 (IGF1), sex hormones, 25-hydroxy-vitamin D, smoking, physical activity (PA) and alcohol consumption. We used inverse-variance weighted MR in the main univariable analyses and performed sensitivity analyses (weighted-median, MR-Egger, Contamination Mixture). We used multivariable MR for the mediation analyses. RESULTS: Genetically predicted BMI was positively associated with CRC risk [odds ratio per SD (5 kg/m2) = 1.17, 95% CI: 1.08-1.24, P-value = 1.4 × 10-5] and robustly associated with nearly all potential mediators. Genetically predicted IGF1, fasting insulin, low-density lipoprotein cholesterol, smoking, PA and alcohol were associated with CRC risk. Evidence for attenuation was found for IGF1 [explained 7% (95% CI: 2-13%) of the association], smoking (31%, 4-57%) and PA (7%, 2-11%). There was little evidence for pleiotropy, although smoking was bidirectionally associated with BMI and instruments were weak for PA. CONCLUSIONS: The effect of BMI on CRC risk is possibly partly mediated through plasma IGF1, whereas the attenuation of the BMI-CRC association by smoking and PA may reflect confounding and shared underlying mechanisms rather than mediation.


Body Mass Index , Colorectal Neoplasms , Mendelian Randomization Analysis , Obesity , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Risk Factors , Obesity/genetics , Obesity/epidemiology , Insulin-Like Growth Factor I/metabolism , Alcohol Drinking/epidemiology
3.
Sci Rep ; 14(1): 10271, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704452

The identification of novel screening tools is imperative to empower the early detection of colorectal cancer (CRC). The influence of the long non-coding RNA maternally expressed gene 3 (MEG3) rs941576 single nucleotide polymorphism on CRC susceptibility remains uninvestigated. This research appraised MEG3 rs941576 association with the risk and clinical features of CRC and obesity-related CRC and its impact on serum MEG3 expression and its targets miR-27a/insulin-like growth factor 1 (IGF1)/IGF binding protein 3 (IGFBP3) and miR-181a/sirtuin 1 (SIRT1), along with the potential of these markers in obesity-related CRC diagnosis. 130 CRC patients (60 non-obese and 70 obese) and 120 cancer-free controls (64 non-obese and 56 obese) were enrolled. MEG3 targets were selected using bioinformatics analysis. MEG3 rs941576 was associated with magnified CRC risk in overall (OR (95% CI) 4.69(1.51-14.57), P = 0.0018) and stratified age and gender groups, but not with obesity-related CRC risk or MEG3/downstream targets' expression. Escalated miR-27a and IGFBP3 and reduced IGF1 serum levels were concomitant with MEG3 downregulation in overall CRC patients versus controls and obese versus non-obese CRC patients. Serum miR-181a and SIRT1 were upregulated in CRC patients versus controls but weren't altered in the obese versus non-obese comparison. Serum miR-181a and miR-27a were superior in overall and obesity-related CRC diagnosis, respectively; meanwhile, IGF1 was superior in distinguishing obese from non-obese CRC patients. Only serum miR-27a was associated with obesity-related CRC risk in multivariate logistic analysis. Among overall CRC patients, MEG3 rs941576 was associated with lymph node (LN) metastasis and tumor stage, serum MEG3 was negatively correlated with tumor stage, while SIRT1 was correlated with the anatomical site. Significant correlations were recorded between MEG3 and anatomical site, SIRT1 and tumor stage, and miR-27a/IGFBP3 and LN metastasis among obese CRC patients, while IGF1 was correlated with tumor stage and LN metastasis among non-obese CRC patients. Conclusively, this study advocates MEG3 rs941576 as a novel genetic marker of CRC susceptibility and prognosis. Our findings accentuate circulating MEG3/miR-27a/IGF1/IGFBP3, especially miR-27a as valuable markers for the early detection of obesity-related CRC. This axis along with SIRT1 could benefit obesity-related CRC prognosis.


Colorectal Neoplasms , Genetic Predisposition to Disease , Insulin-Like Growth Factor Binding Protein 3 , MicroRNAs , Obesity , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Sirtuin 1 , Humans , RNA, Long Noncoding/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Male , MicroRNAs/genetics , Obesity/complications , Obesity/genetics , Middle Aged , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 3/blood , Sirtuin 1/genetics , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Gene Expression Regulation, Neoplastic , Aged , Case-Control Studies , Risk Factors
4.
Eur J Med Res ; 29(1): 270, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704575

BACKGROUND: This study aims to investigate the effects of a conditioned medium (CM) from human umbilical cord mesenchymal stem cells (HuMSCs) cultivated in gelatin sponge (GS-HuMSCs-CM) on hair growth in a mouse model. METHODS: CM was collected from the HuMSCs cultivated in a monolayer or in a gelatin sponge. Vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), keratinocyte growth factor (KGF), and hepatocyte growth factor (HGF) levels in CMs were measured by enzyme-linked immunosorbent assays (ELISAs). A hair loss model by a C57 BL/6J mouse was prepared. The effects of GS-HuMSCs-CM and HuMSCs on hair regrowth in mice were investigated by intradermal injection in the depilated back skin with normal saline (NS) as the control. The time for hair regrowth and full covering in depilated areas was observed, and the hair growth was evaluated histologically and by grossly measuring hair length and diameter. RESULTS: Compared with monolayer cultured cells, the three-dimensional (3D) culture of HuMSCs in gelatin sponge drastically increased VEGF, IGF-1, KGF, and HGF production. GS-HuMSCs-CM and HuMSCs injection both promoted hair regeneration in mice, while GS-HuMSCs-CM presented more enhanced effects in hair length, hair diameter, and growth rate. GS-HuMSCs-CM significantly promoted angiogenesis in injected skin areas, which might also contribute to faster hair regrowth. CONCLUSION: GS-HuMSCs-CM exerted significant effects on inducing hair growth and promoted skin angiogenesis in C57BL/6J mice.


Hair , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Umbilical Cord , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Culture Media, Conditioned/pharmacology , Mice , Umbilical Cord/cytology , Hair/growth & development , Hair/drug effects , Insulin-Like Growth Factor I/metabolism , Vascular Endothelial Growth Factor A/metabolism , Hepatocyte Growth Factor/metabolism , Gelatin/chemistry , Tissue Scaffolds/chemistry , Mice, Inbred C57BL , Cells, Cultured , Fibroblast Growth Factor 7/metabolism
5.
Sci Transl Med ; 16(745): eadh1763, 2024 May.
Article En | MEDLINE | ID: mdl-38691618

An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.


Aortic Aneurysm, Abdominal , Disease Models, Animal , Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Humans , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/prevention & control , Insulin-Like Growth Factor I/metabolism , Male , Swine , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Rats
6.
Reprod Fertil Dev ; 362024 May.
Article En | MEDLINE | ID: mdl-38739740

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Apoptosis , Cell Proliferation , Diet, High-Fat , Lactation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Testis , Animals , Female , Male , Pregnancy , Apoptosis/physiology , Lactation/physiology , Testis/metabolism , Testis/pathology , Rats , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Spermatogenesis/physiology , Sertoli Cells/metabolism , Sertoli Cells/pathology , Insulin-Like Growth Factor I/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Rats, Wistar
7.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674027

Stem cell therapy stands out as a promising avenue for addressing arthritis treatment. However, its therapeutic efficacy requires further enhancement. In this study, we investigated the anti-arthritogenic potential of human amniotic mesenchymal stem cells (AMM) overexpressing insulin-like growth factor 1 (IGF-1) in a collagen-induced mouse model. The IGF-1 gene was introduced into the genome of AMM through transcription activator-like effector nucleases (TALENs). We assessed the in vitro immunomodulatory properties and in vivo anti-arthritogenic effects of IGF-1-overexpressing AMM (AMM/I). Co-culture of AMM/I with interleukin (IL)-1ß-treated synovial fibroblasts significantly suppressed NF-kB levels. Transplantation of AMM/I into mice with collagen-induced arthritis (CIA) led to significant attenuation of CIA progression. Furthermore, AMM/I administration resulted in the expansion of regulatory T-cell populations and suppression of T-helper-17 cell activation in CIA mice. In addition, AMM/I transplantation led to an increase in proteoglycan expression within cartilage and reduced infiltration by inflammatory cells and also levels of pro-inflammatory factors including cyclooxygenase-2 (COX-2), IL-1ß, NF-kB, and tumor necrosis factor (TNF)-α. In conclusion, our findings suggest that IGF-1 gene-edited human AMM represent a novel alternative therapeutic strategy for the treatment of arthritis.


Arthritis, Experimental , Gene Editing , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Animals , Humans , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Arthritis, Experimental/immunology , Mesenchymal Stem Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Mice , Mesenchymal Stem Cell Transplantation/methods , Male , Mice, Inbred DBA , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , NF-kappa B/metabolism , Interleukin-1beta/metabolism
8.
Chemosphere ; 357: 141984, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614392

Benzisothiazolinone (BIT) and propyl paraben (PP) are preservatives in cleaning products; however, their toxicities are not well understood. In this study, zebrafish embryos were exposed to BIT, PP, and mixtures of both for 96 h to investigate the effects on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the transcription of 19 genes related to the GH/IGFs axis. Concentrations of BIT and PP were measured in the whole body of larvae. Zebrafish pairs were also exposed to BIT, PP, and mixtures for 21 d to evaluate the effects on sex hormones, histology in gonad, and transcription of 22 genes related to the hypothalamus-pituitary-gonad axis and vitellogenin. The mixtures had potentiation effects on development, reproduction, hormones, and gene transcripts than individual exposure. Larvae exposed to 229 µg L-1 BIT, 64.5 µg L-1 PP, and mixtures showed reduced growth. Decreased GH and IGF-1 levels were supported by gene regulation associated with the GH/IGFs axis. In larvae, reactive oxygen species, superoxide dismutase, catalase, and glutathione peroxidase levels were increased under all exposures. The gonadosomatic index in males and number of eggs decreased after mixture exposure. In females exposed to mixtures, the percentage of atretic follicle in ovary was significantly increased. The significant decrease in testosterone in males and significant decrease in 17ß-estradiol in females exposed to mixtures suggest anti-estrogenic and anti-androgenic potential. Thus, preservative mixtures in consumer products may be more toxic than the individual substances, which is important for managing the risks of mixing preservatives.


Parabens , Preservatives, Pharmaceutical , Zebrafish , Animals , Female , Parabens/toxicity , Preservatives, Pharmaceutical/toxicity , Male , Insulin-Like Growth Factor I/metabolism , Larva/drug effects , Growth Hormone , Reproduction/drug effects , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism
9.
PLoS One ; 19(4): e0297091, 2024.
Article En | MEDLINE | ID: mdl-38630771

BACKGROUND AND OBJECTIVE: Multiple sclerosis (MS) is a chronic progressive autoimmune disorder of the central nervous system (CNS) that can cause inflammation, demyelination, and axon degeneration. Insulin-like growth factor-1 (IGF-1) is a single-chain polypeptide mainly synthesized in the liver and brain. IGF-1 causes neuronal and non-neuronal cell proliferation, survival, and differentiation. Therefore, it can be used in treating neuro-demyelinating diseases such as MS. The current systematic review and meta-analysis aims to compare the levels of IGF-1 in MS patients and healthy controls and also investigates IGF binding proteins (IGF-BP) and growth hormone (GH) levels between MS patients and healthy controls. METHODS: In this study, we systematically searched electronic databases of PubMed, Scopus, Web of Science (WOS), and Google Scholar, up to December 2022. Studies that measured IGF-1, GH, IGFBP-1, IGFBP-2, or IGFBP-3 in MS patients and healthy controls in either blood or cerebral spinal fluid (CSF) were identified. We calculated Standardized mean differences (SMD) to compare levels of IGF-1, GH, IGFBP-1, IGFBP-2, or IGFBP-3 in MS patients and controls. RESULTS: Finally, we included 11 eligible studies from 1998 to 2018. The sample size of included studies varied from 20 to 200 resulting in a total sample size of 1067 individuals, 531 MS patients, and 536 healthy controls. The mean age of the patient and control groups were 38.96 and 39.38, respectively. The average EDSS among patients was 4.56. We found that blood levels of IGF-1 (SMD = 0.20, 95% CI = -0.20 to 0.59, I2 = 82.4%, K = 8, n = 692), CSF level of IGF-1 (SMD = 0.25, 95% CI = -0.06 to 0.56, I2 = 0.0%, K = 3 n = 164) and blood levels of GH were not significantly higher in MS patients than controls (SMD = 0.08, 95% CI = -0.33 to 0.49, I2 = 77.0% K = 3, n = 421). Moreover, the blood levels of IGFBP-1 (SMD = 0.70, 95% CI = 0.01 to 1.40, I2 = 77%, K = 4, n = 255) were significantly higher in MS cases than in controls. However, the blood levels of IGFBP-2 (SMD = 0.43, 95% CI = -0.34 to 1.21, I2 = 64.2%, K = 3, n = 78) and blood levels of IGFBP-3 (SMD = 1.04, 95% CI = -0.09 to 2.17, I2 = 95.6%, K = 6, n = 443) were not significantly higher in patients than controls. CONCLUSION: Our meta-analysis revealed no significant difference in serum levels of IGF-1, GH, IGFBP-2, and IGFBP-3 between the MS group and healthy controls, except for IGFBP1. However, our systematic review showed that the studies were controversial for IGFBP-3 serum levels. Some studies found an increase in serum level of IGFBP-3 in MS patients compared to the healthy group, while others showed a decrease.


Insulin-Like Growth Factor I , Multiple Sclerosis , Humans , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor Binding Protein 1 , Insulin-Like Growth Factor Binding Protein 2 , Insulin-Like Peptides , Insulin-Like Growth Factor Binding Proteins
10.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 237-241, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678599

We aimed to illustrate the regulatory effect of miR-18 on the onset of non-alcoholic fatty liver disease (NAFLD). MiR-18 level in liver tissues collected from NAFLD patients and mice was detected. In vivo and in vitro influences of miR-18 on biochemical indexes, glucose tolerance and insulin resistance (IR) in NAFLD were determined. H&E staining was conducted to observe hepatic steatosis in NAFLD mice. The downstream target of miR-18 was finally detected by luciferase assay. MiR-18 was upregulated in liver tissues collected from NAFLD patients and mice. Knockdown of miR-18 reduced levels of AST, ALT, TG and TC in NAFLD mice and culture medium of FFA-induced LO2 cells. Meanwhile, knockdown of miR-18 alleviated hepatic steatosis and IR in NAFLD mice. IGF1 was the target of miR-18, and it was negatively regulated by miR-18. MiR-18 is upregulated in NAFLD patients and mice. Knockdown of miR-18 alleviates HFD-induced hepatic steatosis and IR through interacting with IGF1 to regulate to lipid metabolism and insulin signals.


Insulin Resistance , Insulin-Like Growth Factor I , Lipid Metabolism , Liver , Mice, Inbred C57BL , MicroRNAs , Non-alcoholic Fatty Liver Disease , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Animals , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Humans , Lipid Metabolism/genetics , Insulin Resistance/genetics , Male , Liver/metabolism , Liver/pathology , Mice , Insulin/metabolism , Diet, High-Fat , Up-Regulation/genetics , Cell Line , Base Sequence , Signal Transduction , Gene Knockdown Techniques
11.
Front Endocrinol (Lausanne) ; 15: 1380436, 2024.
Article En | MEDLINE | ID: mdl-38638137

Objective: To study the time-dependent changes in disease features of Danish patients with acromegaly, including treatment modalities, biochemical outcome, and comorbidities, with a particular focus on cancer and mortality. Methods: Pertinent acromegaly-related variables were collected from 739 patients diagnosed since 1990. Data are presented across three decades (1990-1999, 2000-2009, and 2010-2021) based on the year of diagnosis or treatment initiation. Results: Adenoma size and insulin-like growth factor I (IGF-I) levels at diagnosis did not differ significantly between study periods. The risk of being diagnosed with diabetes, heart disease, sleep apnea, joint disease, and osteoporosis increased from the 1990s to the later decades, while the mortality risk declined to nearly half. The risk of cancer did not significantly change. Treatment changed toward the use of more medical therapy, and fewer patients underwent repeat surgeries or pituitary irradiation. A statistically significant increase in the proportion of patients achieving IGF-I normalization within 3-5 years was observed over time (69%, 83%, and 88%). The proportion of patients with three or more deficient pituitary hormones decreased significantly over time. Conclusion: Modern medical treatment regimens of acromegaly as well as increased awareness and improved diagnostics for its comorbidities have led to better disease control, fewer patients with severe hypopituitarism, and declining mortality in the Danish cohort of acromegaly patients. The risk of cancer did not increase over the study period.


Acromegaly , Adenoma , Humans , Acromegaly/epidemiology , Acromegaly/therapy , Acromegaly/diagnosis , Cohort Studies , Insulin-Like Growth Factor I/metabolism , Adenoma/diagnosis , Comorbidity
12.
Mol Biol Rep ; 51(1): 517, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622478

BACKGROUND: We previously demonstrated that insulin-like growth factor-1 (IGF-1) regulates sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) in vascular smooth muscle cells (VSMC) via phosphatidylinositol-3 kinase (PI3K). Taking into account that others' work show that IGF-1 activates the PI3K/protein kinase B (Akt) signaling pathway in many different cells, we here further questioned if the Akt/mammalian target of rapamycin (mTOR)/ribosomal protein p70 S6 kinase (S6K) pathway stimulates Na+/K+-ATPase, an essential protein for maintaining normal heart function. METHODS AND RESULTS: There were 14 adult male Wistar rats, half of whom received bolus injections of IGF-1 (50 µg/kg) for 24 h. We evaluated cardiac Na+/K+-ATPase expression, activity, and serum IGF-1 levels. Additionally, we examined the phosphorylated forms of the following proteins: insulin receptor substrate (IRS), phosphoinositide-dependent kinase-1 (PDK-1), Akt, mTOR, S6K, and α subunit of Na+/K+-ATPase. Additionally, the mRNA expression of the Na+/K+-ATPase α1 subunit was evaluated. Treatment with IGF-1 increases levels of serum IGF-1 and stimulates Na+/K+-ATPase activity, phosphorylation of α subunit of Na+/K+-ATPase on Ser23, and protein expression of α2 subunit. Furthermore, IGF-1 treatment increased phosphorylation of IRS-1 on Tyr1222, Akt on Ser473, PDK-1 on Ser241, mTOR on Ser2481 and Ser2448, and S6K on Thr421/Ser424. The concentration of IGF-1 in serum positively correlates with Na+/K+-ATPase activity and the phosphorylated form of mTOR (Ser2448), while Na+/K+-ATPase activity positively correlates with the phosphorylated form of IRS-1 (Tyr1222) and mTOR (Ser2448). CONCLUSION: These results indicate that the Akt/mTOR/S6K signalling pathway may be involved in the IGF-1 regulating cardiac Na+/K+-ATPase expression and activity.


Insulin-Like Growth Factor I , Proto-Oncogene Proteins c-akt , Animals , Male , Rats , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , TOR Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases
13.
FASEB J ; 38(9): e23634, 2024 May 15.
Article En | MEDLINE | ID: mdl-38679876

Insulin-like growth factor-I (IGF-I) facilitates mitotic and anabolic actions in all tissues. In skeletal muscle, IGF-I can promote growth and resolution of damage by promoting satellite cell proliferation and differentiation, suppressing inflammation, and enhancing fiber formation. While the most well-characterized form of IGF-I is the mature protein, alternative splicing and post-translational modification complexity lead to several additional forms of IGF-I. Previous studies showed muscle efficiently stores glycosylated pro-IGF-I. However, non-glycosylated forms display more efficient IGF-I receptor activation in vitro, suggesting that the removal of the glycosylated C terminus is a necessary step to enable increased activity. We employed CRISPR-Cas9 gene editing to ablate IGF-I glycosylation sites (2ND) or its cleavage site (3RA) in mice to determine the necessity of glycosylation or cleavage for IGF-I function in postnatal growth and during muscle regeneration. 3RA mice had the highest circulating and muscle IGF-I content, whereas 2ND mice had the lowest levels compared to wild-type mice. After weaning, 4-week-old 2ND mice exhibited higher body and skeletal muscle mass than other strains. However, by 16 weeks of age, muscle and body size differences disappeared. Even though 3RA mice had more IGF-I stored in muscle in homeostatic conditions, regeneration was delayed after cardiotoxin-induced injury, with prolonged necrosis most evident at 5 days post injury (dpi). In contrast, 2ND displayed improved regeneration with reduced necrosis, and greater fiber size and muscle mass at 11 and 21 dpi. Overall, these results demonstrate that while IGF-I glycosylation may be important for storage, cleavage is needed to enable IGF-I to be used for efficient activity in postnatal growth and following acute injury.


Insulin-Like Growth Factor I , Muscle, Skeletal , Regeneration , Animals , Glycosylation , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Muscle, Skeletal/metabolism , Mice , Regeneration/physiology , Mice, Inbred C57BL , Male , Female
14.
Front Endocrinol (Lausanne) ; 15: 1383812, 2024.
Article En | MEDLINE | ID: mdl-38650713

Background: Recent studies suggest a link between the Klotho protein, sex hormones, and insulin-like growth factor-1 (IGF-1), indicating that α-Klotho levels may rise during puberty, including in central precocious puberty (CPP) cases. This study aimed to explore α-Klotho levels in girls with CPP to assess its potential as a diagnostic and monitoring tool for this condition. Methods: In total, 139 girls, comprising 82 patients diagnosed with CPP and 57 healthy prepubertal controls, were enrolled in this study. From March 2020 to May 2023, we assessed both α-Klotho levels and clinical parameters. α-Klotho concentrations were measured using an α-Klotho ELISA kit. For the girls with CPP, we additionally analyzed samples taken 6 months after GnRH agonist treatment. Results: α-Klotho levels were higher in the CPP group compared with the control (CPP group: 2529 ± 999 ng/mL; control group: 1802 ± 675 pg/mL) (P < 0.001), and its level modest decreased after 6 months of GnRH agonist treatment (2147± 789 pg/mL) (P < 0.001). The association between α-Klotho and IGF-1 SDS, follicular stimulating hormone and baseline luteinizing hormone was assessed by partial correlation after adjusting for age, BMI SDS (r= 0.416, p= <0.001; r= 0.261, p= 0.005; r= 0.278, p= 0.002), respectively. Receiver operating characteristic curve analysis identified an α-Klotho cut-off differentiating CPP from controls, with a cut-off of 1914 pg/mL distinguishing girls with CPP from controls with a sensitivity of 69.5% and specificity of 70.2%; the area under the curve was 0.723. Conclusion: The findings of our study are the first step towards deciphering the role of α-Klotho in puberty induction. With additional data and further research, α-Klotho could potentially be utilized as a significant diagnostic and monitoring tool for CPP.


Biomarkers , Klotho Proteins , Puberty, Precocious , Humans , Female , Puberty, Precocious/blood , Puberty, Precocious/diagnosis , Child , Biomarkers/blood , Case-Control Studies , Gonadotropin-Releasing Hormone/blood , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/analysis
15.
Biochem Biophys Res Commun ; 709: 149811, 2024 May 21.
Article En | MEDLINE | ID: mdl-38569244

Adequate dietary intake of amino acids is imperative for normal animal growth. Our previous work using rat hepatocarcinoma Fao cells demonstrated that growth hormone (GH) resistance, coupled with a concurrent reduction in insulin-like growth factor 1 (Igf1) mRNA levels, may underlie the growth retardation associated with a low-protein diet (LPD). In this study, we investigated whether FGF21 contributes to liver GH resistance in Fao rat hepatoma cells under amino acid deprivation conditions. Mice subjected to an LPD exhibited growth retardation, compromised GH signaling in the liver, and decreased blood IGF-1 levels compared with those on a control diet. To assess the potential involvement of fibroblast growth factor (FGF) 21, produced in response to amino acid deficiency, in the development of GH resistance, we examined GH signaling and Igf1 mRNA levels in Fao cells cultured in amino acid-deprived medium. Despite the inhibition of Fgf21 expression by the integrated stress response inhibitor, an inhibitor of the eukaryotic initiation factor 2-activating transcription factor 4 pathway, GH resistance persisted in response to amino acid deprivation. Additionally, the introduction of FGF21 into the control medium did not impair either GH signaling or GH-induced Igf1 transcription. These data suggest that, in Fao cells, amino acid deprivation induces GH resistance independently of FGF21 activity. By shedding light on the mechanisms behind growth retardation-associated GH resistance linked to amino acid deficiencies, our findings provide valuable insights for clinicians in formulating effective treatment strategies for individuals facing these challenges.


Amino Acids , Growth Hormone , Animals , Mice , Amino Acids/metabolism , Fibroblast Growth Factors/metabolism , Growth Disorders , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , RNA, Messenger/genetics
16.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674097

The insulin-like growth factor (IGF) system has paracrine and endocrine roles in the central nervous system. There is evidence that IGF signalling pathways have roles in the pathophysiology of neurodegenerative disease. This review focusses on Alzheimer's disease and Parkinson's disease, the two most common neurodegenerative disorders that are increasing in prevalence globally in relation to the aging population and the increasing prevalence of obesity and type 2 diabetes. Rodent models used in the study of the molecular pathways involved in neurodegeneration are described. However, currently, no animal model fully replicates these diseases. Mice with triple mutations in APP, PSEN and MAPT show promise as models for the testing of novel Alzheimer's therapies. While a causal relationship is not proven, the fact that age, obesity and T2D are risk factors in both strengthens the case for the involvement of the IGF system in these disorders. The IGF system is an attractive target for new approaches to management; however, there are gaps in our understanding that first need to be addressed. These include a focus beyond IGF-I on other members of the IGF system, including IGF-II, IGF-binding proteins and the type 2 IGF receptor.


Neurodegenerative Diseases , Humans , Animals , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Signal Transduction , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Somatomedins/metabolism , Disease Models, Animal , Parkinson Disease/metabolism , Parkinson Disease/genetics , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Peptides
17.
Nutrients ; 16(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38674874

The present study aimed to investigate the differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) on placental and embryonic development. Pregnant mice were assigned to five groups: healthy control (HC), diabetes mellitus control (DMC), diabetes + low-dose n-3 PUFA (Ln-3), diabetes + high-dose n-3 PUFA (Hn-3), and diabetes + n-6 PUFA (n-6). On E12.5d, the Hn-3 group, but not the n-6 group, had a higher placenta weight. The weight ratio of embryo to placenta in the n-6 group was significantly lower than in the Hn-3 group but higher than in the DMC group. The Hn-3 group had significantly higher protein levels of VEGF, IGF-1, and IGFBP3, while the n-6 group had lower VEGF than the DMC group. Compared with the DMC group, embryonic Cer-16:0 was significantly higher in the Hn-3 group, while embryonic PC (36:6), PC (38:7), and PE (40:7) were significantly lower in the n-6 group. The embryo and placenta weights were positively correlated with placental VEGF, IGFBP3, and embryonic Cer-16:0, and they were negatively correlated with embryonic PC (36:6) and PE (40:7). The weight ratio of embryo to placenta was negatively correlated with embryonic PC (36:6). In addition, embryonic Cer-16:0 was positively correlated with placental VEGF and IGFBP3. In conclusion, n-3 PUFA and n-6 PUFA improved placental and embryonic growth through different mechanisms.


Embryonic Development , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Placenta , Animals , Pregnancy , Female , Fatty Acids, Omega-3/pharmacology , Placenta/metabolism , Placenta/drug effects , Fatty Acids, Omega-6/pharmacology , Mice , Embryonic Development/drug effects , Diabetes Mellitus, Experimental , Insulin-Like Growth Factor Binding Protein 3/metabolism , Vascular Endothelial Growth Factor A/metabolism , Pregnancy in Diabetics/metabolism , Insulin-Like Growth Factor I/metabolism , Organ Size/drug effects
18.
Front Endocrinol (Lausanne) ; 15: 1381083, 2024.
Article En | MEDLINE | ID: mdl-38596224

Serum levels of growth hormone (GH) and insulin-like growth factor (IGF)-I are crucial in the diagnosis and management of GH-related diseases. However, these levels are affected by nutritional and metabolic status. To elucidate the correlations between GH and IGF-I in various conditions, a retrospective analysis was performed for adult patients in which GH levels were examined by general practitioners during the period from January 2019 to December 2021. Of 642 patients, 33 patients were diagnosed with acromegaly, 21 were diagnosed with GH deficiency (GHD), and 588 were diagnosed with non-GH-related diseases (NGRD). In contrast to the positive correlations found between the levels of GH and IGF-I in patients with acromegaly (R=0.50; P<0.001) and patients with GHD (R=0.39; P=0.08), a negative correlation was found in the NGRD group (R=-0.23; P<0.001). In that group, the results of multivariable analysis showed that GH levels were predominantly influenced by gender and body mass index (BMI), whereas IGF-I levels were modulated by albumin in addition to age and GH. Of note, in the NGRD group, there was an enhanced negative correlation between GH and IGF-I under conditions of BMI < 22 and albumin < 4.0 g/dL (R=-0.45; P<0.001), and the negative correlation between GH and IGF-I was reinforced by excluding patients with other pituitary diseases and patients taking oral steroids (R=-0.51; P<0.001 and R=-0.59; P<0.001, respectively). Collectively, the results indicate that attention should be given to the presence of a negative correlation between serum levels of GH and IGF-I, especially in lean and low-nutritious conditions.


Acromegaly , Dwarfism, Pituitary , General Practice , Human Growth Hormone , Adult , Humans , Growth Hormone , Acromegaly/diagnosis , Insulin-Like Peptides , Insulin-Like Growth Factor I/metabolism , Retrospective Studies , Albumins
19.
Discov Med ; 36(183): 699-713, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665019

BACKGROUND: The usage of life-saving mechanical ventilation (MV) could cause ventilator-induced diaphragmatic dysfunction (VIDD), increasing both mortality and morbidity. Aminophylline (AP) has the potential to enhance the contractility of animal skeletal muscle fibers and improve the activity of human respiratory muscles, and the insulin-like growth factor-1 (IGF-1)- forkhead box protein O1 (FOXO1)-muscle RING finger-1 (MURF1) pathway plays a crucial role in skeletal muscle dysfunction. This study aimed to investigate the impact of AP on VIDD and to elucidate the role of the IGF-1-FOXO1-MURF1 pathway as an underlying mechanism. METHODS: Rat models of VIDD were established through MV treatment. IGF-1 lentiviral (LV) interference (LV-IGF-1-shRNA; controlled by lentiviral negative control LV-NC) was employed to inhibit IGF-1 expression and thereby block the IGF-1-FOXO1-MURF1 pathway. Protein and mRNA levels of IGF-1, FOXO1, and MURF1 were assessed using western blot and real-time reverse transcriptase-polymerase chain reaction (RT-qPCR), respectively. Diaphragm contractility and morphometry were examined through measurement of compound muscle action potentials (CMAPs) and hematoxylin and eosin (H&E) staining. Oxidative stress was evaluated by levels of hydrogen peroxide (H2O2), superoxide dismutase (SOD), antioxidant glutathione (GSH), and carbonylated protein. Mitochondrial stability was assessed by measuring the mitochondrial membrane potential (MMP), and mitochondrial fission and mitophagy were examined through protein levels of dynamin-related protein 1 (DRP1), mitofusin 2 protein (MFN2), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and Parkin (western blot). Apoptosis was evaluated using the terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate (UTP) nick-end labeling (TUNEL) assay and levels of Bax, B-cell lymphoma 2 (BCL-2), and Caspase-3. Levels of Atrogin-1, neuronally expressed developmentally downregulated 4 (NEDD4), and muscle ubiquitin ligase of SCF complex in atrophy-1 (MUSA1) mRNA, as well as ubiquitinated protein, were utilized to determine protein degradation. Furthermore, the SUnSET (surface sensing of translation) method was employed to determine rates of protein synthesis. RESULTS: MV treatment upregulated IGF-1 while downregulated FOXO1 and MURF1 (p < 0.05). AP administration reversed IGF-1, FOXO1 and MURF1 (p < 0.05), which was suppressed again by IGF-1 inhibition (p < 0.05), demonstrating the blockage of the IGF-1-FOXO1-MURF1 pathway. MV treatment caused decreased CMAP and cross-sectional areas of diaphragm muscle fibers, and increased time course of CMAP (p < 0.05). Additionally, oxidative stress, cell apoptosis, and protein degradation were increased and mitochondrial stability was decreased by MV treatment (p < 0.05). Conversely, AP administration reversed all these changes induced by MV, but this reversal was disrupted by the blockage of the IGF-1-FOXO1-MURF1 pathway. CONCLUSIONS: In this study, MV treatment induced symptoms of VIDD in rats, which were all effectively reversed by AP regulating the IGF-1-FOXO1-MURF1 pathway, demonstrating the potential of AP in ameliorating VIDD.


Aminophylline , Diaphragm , Animals , Male , Rats , Aminophylline/pharmacology , Diaphragm/drug effects , Diaphragm/pathology , Diaphragm/physiopathology , Diaphragm/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Insulin-Like Growth Factor I/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Respiration, Artificial/adverse effects , Signal Transduction/drug effects , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
20.
Medwave ; 24(3): e2783, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687996

Introduction: Chronic obstructive pulmonary disease is a systemic disease characterized not only by respiratory symptoms but also by physical deconditioning and muscle weakness. One prominent manifestation of this disease is the decline in respiratory muscle strength. Previous studies have linked the genotypes of insulin-like growth factor 1 and 2 (IGF-1 and IGF-2) to muscle weakness in other populations without this disease. However, there is a notable knowledge gap regarding the biological mechanisms underlying respiratory muscle weakness, particularly the role of IGF-1 and IGF-2 genotypes in this pulmonary disease. Therefore, this study aimed to investigate, for the first time, the association between IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with chronic obstructive pulmonary disease. In addition, we analyzed the relationship between oxidative stress, chronic inflammation, and vitamin D with respiratory muscle strength. Methods: A cross sectional study with 61 individuals with chronic obstructive pulmonary disease. Polymerase chain reaction of gene polymorphisms IGF-1 (rs35767) and IGF-2 (rs3213221) was analyzed. Other variables, related to oxidative stress, inflammation and Vitamin D were dosed from peripheral blood. Maximal inspiratory and expiratory pressure were measured. Results: The genetic polymorphisms were associated with respiratory muscle strength ( 3.0 and 3.5; = 0.57). Specific genotypes of IGF-1 and IGF-2 presented lower maximal inspiratory and expiratory pressure (<0.05 for all). Oxidative stress, inflammatory biomarkers, and vitamin D were not associated with respiratory muscle strength. Conclusion: The polymorphisms of IGF-1 and IGF-2 displayed stronger correlations with respiratory muscle strength compared to blood biomarkers in patients with chronic obstructive pulmonary disease. Specific genotypes of IGF-1 and IGF-2 were associated with reduced respiratory muscle strength in this population.


Introducción: La enfermedad pulmonar obstructiva crónica es una enfermedad sistémica caracterizada no solo por síntomas respiratorios, sino también por el deterioro físico y la debilidad muscular. Una manifestación destacada de esta enfermedad es el declive en la fuerza de los músculos respiratorios. Estudios previos han vinculado los genotipos de factor de crecimiento insulínico 1 y 2 (IGF-1 e IGF-2) con la debilidad muscular en poblaciones sin esta enfermedad. Sin embargo, existe un vacío de conocimiento con respecto a los mecanismos biológicos subyacentes a la debilidad de los músculos respiratorios, en particular el papel de los genotipos IGF-1 e IGF-2 en esta enfermedad pulmonar. Por lo tanto, este estudio tuvo como objetivo investigar, por primera vez, la asociación de los genotipos IGF-1 e IGF-2 con la fuerza de los músculos respiratorios en individuos con enfermedad pulmonar obstructiva crónica. Además, analizamos la relación entre el estrés oxidativo, la inflamación crónica y la vitamina D con la fuerza de los músculos respiratorios. Métodos: Un estudio transversal con 61 individuos con enfermedad pulmonar obstructiva crónica. Se analizó la reacción en cadena de la polimerasa de los polimorfismos genéticos IGF-1 (rs35767) e IGF-2 (rs3213221). Otras variables relacionadas con el estrés oxidativo, la inflamación y la vitamina D se dosificaron a partir de muestras de sangre periférica. Se midieron las presiones inspiratorias y espiratorias máximas. Resultados: Los polimorfismos genéticos están asociados con la fuerza de los músculos respiratorios (F: 3.0 y 3.5; R2= 0.57). Genotipos específicos de IGF-1 e IGF-2 presentaron bajos valores en las presiones inspiratorias y espiratorias (p<0.05 en todos los casos). El estrés oxidativo, los biomarcadores inflamatorios y la vitamina D no se asociaron con la fuerza de los músculos respiratorios. Conclusión: Los polimorfismos de IGF-1 e IGF-2 mostraron correlaciones más sólidas con la fuerza de los músculos respiratorios en pacientes con enfermedad pulmonar obstructiva crónica en comparación con los biomarcadores sanguíneos. Genotipos específicos de IGF-1 e IGF-2 se asociaron con una disminución de la fuerza de los músculos respiratorios en esta población.


Genotype , Insulin-Like Growth Factor II , Insulin-Like Growth Factor I , Muscle Strength , Oxidative Stress , Pulmonary Disease, Chronic Obstructive , Respiratory Muscles , Humans , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/genetics , Muscle Strength/physiology , Male , Insulin-Like Growth Factor I/metabolism , Respiratory Muscles/physiopathology , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Aged , Female , Middle Aged , Inflammation/physiopathology , Inflammation/genetics , Vitamin D/blood , Muscle Weakness/physiopathology , Muscle Weakness/genetics
...